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Abstract 

An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, 

solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV 

laser applications. The model involves an all-order calculation using a semi-analytical effective 

electron-ion interaction. The predicted increases in XUV absorption with rising temperature 

occur via two effects: increased availability of final states from reduced electron degeneracy and 

a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature 

dependence as well as other details between the present approach and a recently proposed 

absorption model are discussed. 
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1. Introduction 

Recently Vinko et al [1] (hereafter VGW) observed that free-electron lasers offer an 

excellent opportunity to study the opacity of warm dense Al. One complication is eliminated 

since the heating is fast and hydrodynamic motion does not play an important role. Furthermore, 

theory often separates photon absorption contributions and inverse bremsstrahlung dominates the 

XUV Al opacity below the L-edge; thus, isolating a single process. 

Several authors have studied photon absorption by electron fluids. [1,2] Nevertheless 

motivated by the renewed interest, Al absorption calculations relevant to free-electron laser 

applications using a moderately simple model are presented. Inverse bremsstrahlung is briefly 

reviewed in Sect. 2 and the model, which is based on standard concepts, is introduced in Sect. 3. 

Results and comparisons to experimental data are presented in Sect. 4 with an analysis in Sect. 5. 

The VGW results are discussed in Sect. 6 followed by conclusions in the last section. 

2. Inverse Bremsstrahlung 

The non-relativistic, thermally averaged inverse bremsstrahlung extinction coefficient of a 

photon with energy   

€ 

ω  by an isolated electron-ion pair is often written in the form [3] 

 

€ 

αIB ω( ) = g ω,T( )αK ω( )  (2.1) 

with 

€ 

T  the temperature in energy units. The thermally averaged Gaunt factor, 

€ 

g ω,T( ) , accounts 

for quantum mechanical corrections to the classical Kramers result, 

€ 

αK ω( ). [4] 

2.1 Collective effects 

Equation (2.1) assumes that electron-ion pairs are independent. Collective phenomena, 

however, alter the absorption by screening the electron-ion interaction. [5-8] Furthermore, 

degeneracy modifies the thermal average so that [8] 

 
  

€ 

g ω,T( ) =
π

2I1 2 η( )
dε
T
fη

ε
T
 

 
 
 

 
 1− fη

ε + ω
T

 

 
 

 

 
 

 

 
 

 

 
 

o

∞
∫ g ε,ω( ) (2.1.1) 

where the Fermi-Dirac distribution and Fermi integrals are defined as 

 

€ 

fη x( ) = 1+ ex−η( )
−1

 (2.1.2) 

 

€ 

Iµ η( ) =
1

Γ 1+ µ( )
dx xµ fη x( )

o

∞
∫  (2.1.3) 

with 

€ 

η the chemical potential divided by 

€ 

T  and 

€ 

Γ x( )  the Gamma function. [9] 
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The Gaunt factor 

€ 

g ε,ω( ) with 

€ 

ε the initial electron energy is usually computed in the one-

electron picture. The calculations are often performed in the dipole approximation and partial 

wave decomposition leads to [3] 

 
  

€ 

g ε,ω( ) =
3

2π ε ε + ω( )
 M,−1

2 ε,ω( ) + M,+1
2 ε,ω( ){ }

=1

∞
∑  (2.1.4) 

The dipole matrix element is most readily evaluated in the “acceleration” form, 

 
  

€ 

M, ′  ε,ω( ) = drψε r( )
dVs r( )
dr

ψε+ω, ′  r( )
o

∞
∫  (2.1.5) 

where 
  

€ 

ψε r( )  is the electron wave function with energy 

€ 

ε and orbital angular momentum   

€ 

 , 

moving in the spherically symmetric potential 

€ 

Vs r( )  with outgoing wave boundary conditions. 

The static potential is determined by an average charge distribution of the ion. For example, 

 

€ 

Vs r( ) =Vb r( ) − Ze
2

r
e−r λ  (2.1.6) 

with 

€ 

Ze the net ion charge, 

€ 

λ  a many-body screening length, and 

€ 

Vb r( )  a short-ranged, frozen-

core potential due to bound electrons so that 

€ 

Vs r→ 0( ) = −ZNe
2 r with 

€ 

ZNe  the nuclear charge. 

2.2 Dispersion and multiple collisions 

In addition, there are dispersion and multiple collisions that can impact the absorption for 

photon frequencies near and below the plasmon resonance. [7,10] The Drude model 

approximates these effects with a complex refractive index of the form [10] 

 

€ 

N2 ω( ) =1−
ω p
2

ω ω + iν ω( )[ ]
 (2.2.1) 

where 

€ 

ν ω( )  is a collision frequency and 

€ 

ω p = 4πe2n m  with 

€ 

n and 

€ 

m  the electron free 

number density and mass, respectively. The resulting absorption and index of refraction are [10] 

 

€ 

αD ω( ) =
2ω
c
ImN ω( ) =

ω p
2

ω2 + ν 2 ω( )
ν ω( )
n ω( )c

 (2.2.2) 

 

€ 

n ω( ) = ReN ω( ) =
ω ω2 −ω p

2 + ν 2( ) + ω2 + ν 2( ) ω2 −ω p
2( )
2

+ω2ν 2

2ω ω2 + ν 2( )
 (2.2.3) 

where 

€ 

c  is the speed of light in vacuum. 
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2.3 Born approximation 

Systematic derivations of the inverse bremsstrahlung cross-section in a fluctuating medium 

lead to second-order expressions of the energy dependent Gaunt factor, [5-7] 

 

€ 

g 2( ) ε,ω( ) =
3
π

dq
q
S q( )

F 2 q( )
D q,ω( ) 2k−

k+
∫  (2.3.1) 

where 

€ 

F q( ) is simply related to the Fourier transform of the unscreened electron-ion interaction, 

  
  

€ 

F q( ) =
q2

4πe2
d r ei q ⋅ r V r( )∫  (2.3.2) 

and 

 
  

€ 


2k±
2

2m
= 2ε + ω ± 2 ε ε + ω( )  (2.3.3) 

define the maximum and minimum wave number momentum transfer. This expression for the 

energy dependent Gaunt factor includes dynamic screening and ion-ion correlations through the 

plasma dielectric function, 

€ 

D q,ω( ) , and the ion structure factor, 

€ 

S q( ), respectively. 

The results in Eq. (2.1.4) simplify in the Born approximation to [3] 

 

€ 

gBorn ε,ω( ) =
3
π

dq
q
Fs
2 q( )

k−

k+
∫

=
3
π

dq
q
Fb
2 q( )

k−

k+
∫ + Z2gBorn

λ ε,ω( )

 (2.3.4) 

with 

€ 

Fs q( )  and 

€ 

Fb q( )  related to the Fourier transform of 

€ 

Vs r( )  and 

€ 

Vb r( ), respectively, and 

 

€ 

gBorn
λ ε,ω( ) =

3
2π

ln 1+ λ2k+
2

1+ λ2k−
2

 

 
 
 

 

 
 
 
+

1
1+ λ2k+

2 −
1

1+ λ2k−
2

 
 
 

  

 
 
 

  
 (2.3.5) 

where Eq. (2.1.6) was used to get the last line of Eq. (2.3.4). One difference between Eq. (2.3.1) 

and (2.3.4) is dynamic rather than static screening of the interaction. The second difference is the 

absence of ion-ion correlations in the latter. Both are considered in Sect 5. 

3. Proposed Model 

An approximation for the collision frequency can be obtained by comparing Eq. (2.1) and 

Eq. (2.2.2) for large photon frequencies for which 

€ 

n ω( ) ≈1 and 

€ 

ν ω( ) <<ω , to yield 
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€ 

ν ω( )
c

=
ω2

ω p
2 g ω,T( )αK ω( )  (3.1) 

The proposed ad hoc model for the photon absorption assumes the form in Eq. (2.2.2) corrected 

for stimulated emission, 

 
  

€ 

α ω( ) = 1− e−ω T( ) ω p
2

ω2 + ν 2 ω( )
ν ω( )
n ω( )c

 (3.2) 

with 

€ 

ν ω( )  and 

€ 

n ω( )  in Eqs. (3.1) and (2.2.3). The model incorporates many of the essential 

phenomena in inverse bremsstrahlung for plasmas and simple metals. [11] 

The input to the model is the static potential. Here, the form in Eq. (2.1.6) is kept and use the 

analytic potential designed to reproduced atomic data of isolated ions with accuracy comparable 

to single configuration, relativistic, self-consistent-field calculations. [12] Thus, the potential 

reasonably describes the average charge distribution of a nucleus plus bound electrons. The 

many-body screening of the long-ranged Coulomb tail from the net ion charge assumes 

 

€ 

λ =
T

4πe2ne

I1 2 η( )
I−1 2 η( )

 (3.3) 

which is a generalized electron Debye length. [13] The degeneracy parameter is obtained 

assuming an ideal electron gas, 

 

€ 

nλT
3 = 2I1 2 η( ) (3.4) 

where 
  

€ 

λT = 2π2 mT  is the thermal de Broglie wavelength. 

4. Results 

The L-shell electrons in thermal equilibrium, solid-density Al are not expected to ionize 

significantly until the temperature is above ~10eV. [1] The model electron-ion interaction is then 

given by 

€ 

Z = 3 and frozen-core potential, 

 

€ 

Vb r( ) = −
e2

r
2e−r λK + 8e−r λL[ ] (4.1) 

where 

€ 

λK = 0.1009ao  and 

€ 

λL = 0.3752ao with 

€ 

ao the Bohr radius. [12] 

4.1 Cold aluminum 

Absorption data for cold, solid Al is commonly quoted from two sources [14,15] that 

disagree below the L-edge. Recent measurements, however, agree with the earlier data; thus, it is 
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taken as the more accurate. [1,16] The Al photon absorption from the present model at 

€ 

T = 0.025eV  and measurements [14] are presented in Fig. 1 (the calculation with 

€ 

Vb r( ) = 0  is 

discussed in Sect. 5 and those from VGW in Sect. 6). The degeneracy and screening parameter in 

the calculation are provided in Table 1 and the matrix elements in Eq. (2.1.5) were computed 

using the phase-amplitude method. [17] For these short ranged potentials, however, the Green’s 

function approach [18] should not be significantly more time consuming. The figure shows 

reasonable agreement between the present model and experimental data (e.g.; earlier 

comparisons show larger discrepancies [1,19]). 

Index of refraction calculations for cold, solid Al are displayed in Fig. 2 showing good 

agreement with the measurements. [20,21] The figure includes the high frequency approximation 

(collisionless plasma, 

€ 

ν = 0), 

 

€ 

no ω( ) = 1−
ω p
2

ω2
 (4.1.1) 

valid for 

€ 

ω >ω p  and in reasonable agreement with the model above the plasma frequency. The 

figure also explains the sharp increase in absorption below the plasma frequency as a 

consequence of the decrease in the index of refraction. Finally, note the discrepancy at small 

photon energies due in part to neglected ion-ion correlations discussed in Sect. 5. 

4.2 Warm aluminum 

Given the reasonable success of the model in reproducing the cold Al data, it is tempting to 

try warmer conditions accessible with free-electron laser experiments. The ratios of absorption 

calculations at several temperatures to the 

€ 

T = 0.025eV  result are plotted in Fig. 3 with input 

degeneracy and screening parameter given in Table 1. The figure shows decreased absorption for 

€ 

ω <ω p  caused in part by the behavior of the index of refraction. For example, displayed in 

Fig. 2 are calculations for solid-density Al at 

€ 

T =10eV  showing the temperature behavior of 

€ 

n ω( ) . The enhanced absorption for 

€ 

ω >ω p  with increasing temperature is due to changes in 

screening length and degeneracy. 

The longer screening length strengthens the electron-ion interaction increasing the collision 

frequency (shape resonances can produce exceptions [18]). Note that although there is a net 

increase in 

€ 

λ with increasing temperature, there are competing effects between the explicit and 

implicit temperature dependence in Eq. (3.3). The former clearly increases 

€ 

λ while the latter 
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decreases 

€ 

λ (the ratio of Fermi functions in Eq. (3.3) goes to 1 for 

€ 

η << −1 and increase linearly 

with 

€ 

η for 

€ 

η >>1). 

The increases in absorption by the reduced electron degeneracy follow from the thermal 

average. Consider the weighting function in Eq. (2.1.1), 

 

€ 

Gη u( ) =
π

2I1 2 η( )
dx fη x( ) 1− fη x + u( )[ ]

o

∞
∫

=
π

2 1− e−u( )I1 2 η( )
ln 1+ eη

1+ eη−u
 
 
 

  

 
 
 

  

 (4.2.1) 

The range of integration in Eq. (4.2.1) is controlled by the degeneracy. The extreme degeneracy 

limit clearly shows this effect where 

€ 

Gη u( )  increases linearly with   

€ 

u = ω T  until 

€ 

u =η at 

which point it becomes constant. Table 1 shows the decrease in electron degeneracy with rising 

temperature and consequent increase in 

€ 

Gη u( )  for   

€ 

ω = 30eV . 

Displayed in Fig. 4 are calculations of 

€ 

ν ω( )  for solid-density Al at 

€ 

T = 0.025 and10eV . To 

estimate the separate impact of the two effects (increased 

€ 

λ and decreased 

€ 

η) a calculation at 

€ 

T =10eV  using the same effective electron-ion interaction as the cold case (i.e.; artificially 

adjust the screening length to the cold result) is also displayed. The figure shows the largest 

increase in 

€ 

ν ω( )  from reduced degeneracy at small 

€ 

ω , which is expected since the smaller the 

photon energy the more degeneracy restricts the available final states. The increase from a larger 

€ 

λ  is approximately 

€ 

ω  independent. 

Also displayed in Fig. 4 is the Born approximation to the collision frequency using 

Eq. (2.3.4). It considerably overestimates the all-order calculations for either 

€ 

T = 0.025 or 10eV . 

Furthermore, the Born results underestimate the temperature dependence of 

€ 

ν ω( ) . Clearly, 

weak-scattering theory fails for the electron-ion interaction in the present model. 

4.3 Cold Li and Na 

Although Al is the prototypical simple metal with tightly bound, weakly polarizable core 

electrons, the model can be readily applied to other elements and conditions since the input is an 

effective electron-ion interaction defined by the material conditions. In Fig. 5 comparisons are 

made to solid Li and Na experimental data. [14] The frozen core interaction has the same 

functional form as in Eq. (4.1) except that the fitting parameters reproduce atomic data for the 
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valence electron in neutral Li and Na [12] and the screening length is adjusted to the appropriate 

free electron density. The figure shows reasonable agreement of the present model with 

experimental data for Li and Na for 

€ 

ω >ω p . 

5. Approximations 

Although the reasonable agreement with the cold experimental data is tantalizing, the present 

model makes several ad hoc approximations. It is possible, however, to estimate errors due to 

several neglected or approximated physical processes. 

5.1 Electron screening 

The present model not only neglects dynamic screening, but it also assumes an exponentially 

decaying interaction. To test the approximation, the thermally averaged collision frequency 

calculations using 

€ 

g 2( ) ε,ω( )  in Eq. (2.3.1) with 

€ 

S q( ) =1 and a Coulomb potential screened by 

the RPA 

€ 

D q,ω( )  are compared to calculations with 

€ 

gBorn
λ ε,ω( )  in Eq. (2.3.5). In addition, the 

results using 

€ 

gBorn
λ ε,ω( )  are corrected by the index of refraction to account for dispersive 

behavior present in 

€ 

D q,ω( ) . Their ratio is plotted in Fig. 6 for solid-density Al at 

€ 

T = 0.1eV  

showing that for 

€ 

ω >ω p  the static approximation and dynamic screening agree reasonably well. 

5.2 Ion-ion correlations 

A neglected process in the present model is the interference of scattered waves from nearby 

ions. This phenomenon can be readily included through the ion structure factor in the Born 

approximation. [5-8] To estimate their impact, the collision frequency is computed in the Born 

approximation using the static screening length in Eq. (3.3) with an approximation for 

€ 

S q( ). The 

structure factor was obtained using the Percus-Yevick equation for hard-spheres [22,23] with a 

packing fraction of 

€ 

0.45. [24] The ratio of the results with and without ion-ion correlations for 

solid-density Al at 

€ 

T = 0.1eV  is plotted in Fig. 6 showing ~10% correction over the photon 

energies of interest. Increasing the ion temperature leads to broadening of the features in 

€ 

S q( ) 

[24] further reducing the importance of ion correlations. 

The small impact of ion-ion correlations on the collision frequency for 

€ 

ω >ω p  follows from 

the limits on the momentum transfer integration. For example, at high degeneracy the thermal 

average in Eq. (2.1.1) is weighted towards values near the chemical potential. Assuming Al at 
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solid density and 

€ 

T = 0.1eV , then for 

€ 

ε =ηT ≈12eV  and 
  

€ 

ω = ω p ≈15eV  the limits of 

integration in Eq. (2.3.1) are 

 

€ 

k− ≈ 0.94Å
−1 and k+ ≈ 4.5Å

−1 (5.2.1) 

This range encompasses the first peak and part of the second in the structure factor. [24] 

Consequently, for 

€ 

ω >ω p  ion-ion correlations should not significantly affect the photon 

absorption. Conversely, for 

€ 

ω ≤ω p  the ion-ion correlations would impact the results. 

5.3 Frozen-core potential 

The model assumes a frozen core potential to describe the localized bound electrons. At 

small frequencies the polarization of the bound electrons is negligible. At higher photon 

energies, however, the dynamic response of the core can become important. [19] That is, the 

assumed core potential is adequate to describe electron scattering from Al+3 at large impact 

parameters, but it is only approximate for the core penetrating collisions required for absorption 

at photon energies approaching the ionization of the L-shell electrons. 

The relative contribution of the frozen-core potential is displayed in Fig. 1 by an absorption 

calculation using the present model but setting 

€ 

Vb r( ) = 0  that shows considerable larger 

disagreement with the experimental data than the full potential result. The discrepancy between 

the present model and experimental data together with the model variation when setting 

€ 

Vb r( ) = 0  suggest that simulating the dynamic response of the bound electrons in the present 

model could improve the agreement with the cold experimental data. [19] 

6. Vinko et al model [1] (VGW) 

Recently VGW proposed a semi-analytical photon absorption model for plasmas and simple 

metals to study warm dense matter, but their results differ from the present effort. Briefly, the 

VGW model is a weak-scattering approximation with thermal average in Eq. (2.1.1) corrected 

for stimulated emission (see Appendix). Their calculations used a pseudo-potential together with 

the RPA or a local field corrected (LFC) dielectric function as well as an ion structure factor for 

the crystal or one suitable for liquids. [1] 

Their results [1] are displayed in Fig. 1. As discuss in VGW, the molecular dynamics 

simulation (MD) agree with the cold experimental data (also with the present model) only at low 

frequencies where the neglected particle-hole interactions in the MD simulations are small. The 

VGW-RPA semi-analytic model and MD results agree for 

€ 

ω ≥15eV  (limit of available VGW 
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semi-analytical model calculations) and there is significant improvement compared to the 

measurements using the VGW-LFC dielectric function. 

6.1 Pseudo-potential 

The electron-ion interaction in VGW is the empty-core potential with Fourier transform 

 

€ 

˜ V q;Rc( ) = −4πZe2 cos qRc( ) q2  (6.1.1) 

where 

€ 

Rc  is a free parameter determined by fitting a property of the solid. Their choice of 

€ 

Rc = 0.6Å  was based on reproducing Fermi surface measurements. [1] Interestingly, the value 

for 

€ 

Rc  can vary by about a factor of 2 depending on the fitted physical quantity. [25] The 

sensitivity of the absorption model to 

€ 

Rc  was not addressed by VGW. 

There is reason for skepticism regarding the reported [1] improved agreement between the 

cold, solid Al experimental data and the VGW-LFC model. Specifically, the statically screened 

pseudo-potential, 

€ 

˜ V q;Rc( ) D q,ω = 0( ) , is used to determine 

€ 

Rc  when fitting the Fermi surface 

eigenvalues. [25] It appears, however, that VGW set 

€ 

Rc = 0.6Å  in all their absorption 

calculations independent of the different dielectric function approximations. 

The possible consequences of this inconsistency are examined using a simplified procedure. 

The value 

€ 

Rc = 0.6Å  is retained for the RPA dielectric function as in VGW. To determine 

€ 

Rc  

for the LFC dielectric function, the thermally averaged collision frequency at 

€ 

ω = 0 for cold, 

solid Al is fitted to the RPA result. These calculations use Eq. (2.3.1) with the degeneracy 

parameter in Table 1, 

€ 

S q( ) =1, and screening approximated by 

 

€ 

q→0
Lim

˜ V q;Rc( )
D q,ω = 0( )

= −
4πZe2λ2

1+ λ2q2 cos qRc( ) (6.1.2) 

For the RPA dielectric function 

 

€ 

λ → λTF = πao 4kF  (6.1.3) 

where 

€ 

kF = 3π 2ne( )
1 3

 defines the Fermi wave number and 

€ 

λTF  is the Thomas-Fermi screening 

length. For the Hubbard [25,26] local field corrected dielectric function (HLFC) 

 

€ 

λ → λH = λTF 1− κ

4kF
2λTF
2  (6.1.4) 

where 

€ 

κ =1+ 0.158 πkFao  chosen to satisfy the compressibility sum rule. The procedure yields 

€ 

Rc = 0.745Å  for the HLFC dielectric function. 
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Although this approach does not follow VGW, it is comparable and consistent. The pseudo-

potentials idea is to approximate the wavefunction in the region outside the atomic core with a 

weaker potential that it is hoped suitable for perturbation theory. When fitted to the eigenvalues, 

the quasi-particle structure near the Fermi surface is optimized. [25] Similarly, the collision 

frequency at 

€ 

ω = 0 is determined by the phase-shifts at energies near the Fermi surface. [3] 

Calculations of the thermally averaged collision frequency for cold, solid Al are compared in 

Fig. 7. All these calculations use Eq. (2.3.1) with 

€ 

S q( ) =1 and static screening of 

€ 

˜ V q;Rc( )  

described by 

€ 

λTF  or 

€ 

λH ). In addition, the HLFC calculations in the figure are normalized to the 

RPA results. It follows that the HLFC calculations using 

€ 

Rc = 0.6Å  are 50-100% greater than the 

RPA results; compatible with the enhancement reported by VGW. On the other hand, the HLFC 

calculations with 

€ 

Rc = 0.745Å  are about the same as the RPA results for   

€ 

ω < 50eV . Thus, a 

consistent treatment of the pseudo-potential may well impact the conclusions in VGW. 

6.2 Temperature dependence 

The temperature dependence of the solid-density Al absorption at constant photon energy in 

Fig. 8 shows different behaviors from VGW-LFC and the present model. To emphasize the 

temperature dependence, each calculation in Fig. 8 was normalized to its respective value at 

room temperature. In an effort to ascertain the source of the discrepancy, additional calculations 

using the following expressions are displayed in Fig. 8, 

 

  

€ 

α1 ω( )

α2 ω( )

 

 
 

 
 

= 1− e−ω T( ) ω p
2

ω2c

ν ω( )

νBorn ω( )

 

 
 

 
 

 (6.2.1) 

That is, both compute the collision frequency using the electron-ion interaction from the present 

model and both neglect dispersion and multiple collisions. The difference is that 

€ 

α1 ω( ) is all-

order in the interaction while 

€ 

α2 ω( )  makes the Born approximation. The similarities between 

€ 

α1 ω( ) and the present model in Fig. 7 show that dispersion and multiple collisions have, as 

expected, [7] small impact well above the plasma frequency. The similarities between 

€ 

α2 ω( )  

and VGW-LFC suggest that the weak-scattering approximation is the source of the discrepancy. 

7. Conclusion 

A relatively straightforward model for the photon absorption of plasmas and simple metals 

was proposed. The approach is based on a Drude picture where the electron-ion collision 
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frequency is obtained from the usual inverse bremsstrahlung all-order formula corrected for 

degeneracy and many-body screening. The results are in reasonable agreement with the cold, 

solid Al measurements of the photon absorption and index of refraction. The contribution of the 

atomic core portion of the electron-ion interaction to the model absorption is found to be 

significant as well as necessary to attain reasonable agreement with the experimental data. 

Furthermore, it is possible that the neglected dynamic response of the bound electrons (frozen-

core approximation) is partly responsible for residual errors. 

The model displayed, in agreement with physical intuition, an enhancement in the XUV 

absorption as the rising temperature increases the many-body screening length and reduces 

electron degeneracy. As expected, [5,7,8] estimates of ion-ion correlations and dynamic 

screening effects produced only small corrections to the XUV absorption. 

It was found that the Born approximation overestimates the all-order calculation for the 

collision frequency by more than an order of magnitude and underestimates the temperature 

dependence. Furthermore, numerical tests suggest that the discrepancies in the absorption 

temperature behavior between the present model and that proposed by Vinko et al [1] is due to 

the weak-scattering approximation in the latter. 

The proposed model is not specific to solid density Al. The only input is a semi-analytical 

electron-ion interaction, which is defined by the material conditions. Consequently, the model 

can be readily applied to other conditions with appropriate changes in the interaction. For 

example, the model was in reasonable agreement with cold, solid Li and Na experimental 

absorption data and was implemented in the OPAL and TOPAZ opacity codes. [27-29] Finally, 

experimental determination of the photon absorption, specifically the temperature dependence of 

XUV absorption by solid-density Al, should enhance the fundamental understanding of warm 

dense matter and help resolve existing theoretical discrepancies. 

 

Acknowledgments: Thanks are due to Sam M. Vinko for providing their calculations in tabular 

form. This work performed under the auspices of the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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APPENDIX 
Ron-Tzoar [6] and Born approximation 

Ron and Tzoar give the absorption extinction coefficient for a plasma or simple metal in the 

form [1,6] 

 

€ 

α ω( ) =
n

6π 2m2ω3c
dqq6 ˜ V 2 q( )

D q,ω( ) 2 S q( )Im D q,ω( ) −D q,0( ){ }
o

∞
∫  (A.1) 

This expression can be rewritten using the dielectric function [6] 

 

  

€ 

D q,ω( ) = 2 d  p 
2π( )3

∫
n  p − n  p +  q 

ω + E  p − E  p +  q + iξ

= 2 d  p 
2π( )3

∫
n  p −  q 2 − n  p + q 2

ω − 2
 p ⋅  q m + iξ

 (A.2) 

where the second line involves a change of variables and analytic continuation has 

€ 

ξ → 0+ , 

 
  

€ 

α ω( ) =
ne2

3π 2m2ω3c
d  p ∫ dqq4 ˜ V 2 q( )

D q,ω( ) 2 S q( ) n  p −  q 2 − n  p +  q 2{ }δ ω −


2

m
 p ⋅  q 

 

 
  

 

 
  

o

∞
∫  (A.3) 

The one-electron Fermi distribution and energy are, respectively, 

 

€ 

np = fη
E p
T

 

 
 

 

 
  (A.4) 

with 

€ 

fη x( ) in Eq. (2.1.2) and 

 

€ 

  

€ 

E p =

2p2

2m
 (A.5) 

To proceed, use the energy conserving delta-function in Eq. (A.3) to write, 

 
  

€ 

n  p −  q 2 − n  p +  q 2 = 1− e−ω T( )n  p −  q 2 1− n  p +  q 2( )  (A.6) 

Then, substituting Eq. (A.6) into Eq. (A.3), performing the solid angle integration, changing 

variables   

€ 

 p =  p +  q 2 , and introducing   

€ 

x = 2p2 2mT  and   

€ 

u = ω T , yields 
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€ 

α ω( ) =
16ne6

34ω3c
1− e−u( ) dx

o

∞
∫ fη x( ) 1− fη x + u( )[ ] dq

q
S q( )

F 2 q( )
D q,ω( ) 2k−

k+
∫  (A.7) 

with 

€ 

F q( ) and 

€ 

k±  defined in Eqs. (2.3.2) and (2.3.3). The second-order expression in Eq. (A.7) 

explicitly displays the stimulated emission correction and the thermal average over initial particle 

plus final holes and is identical to the Born approximation from the “inverse bremsstrahlung” 

approach. [5,7,8] 
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TABLE 1 

Degeneracy from Eq. (3.4), screening parameter, and value of 

€ 

Gη u( )  at   

€ 

ω = 30eV  for solid-

density Al at several temperatures. 

€ 

T  [eV] 

€ 

η 

€ 

λ ao[ ]   

€ 

Gη u( )  

0.025 467.2 0.918 0.0547 

0.1 115.9 0.923 0.109 

1 11.58 0.924 0.343 

2 5.676 0.934 0.476 

4 2.579 0.981 0.627 

7 1.038 1.088 0.725 

10 0.2745 1.204 0.765 
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FIGURE CAPTIONS 

Fig. 1 Photon absorption cross-section versus photon energy for cold, solid Al from several 

models compared to experimental data [14] with L-edge at   

€ 

ω ≈ 73eV . 

Fig. 2 Index of refraction versus photon energy for solid-density Al: present model at 

€ 

T = 0.025eV  (solid) and 

€ 

T =10eV  (short-dash), cold experimental data  (circles), [20,21] 

and collisionless limit 

€ 

no ω( ) (long-dash). 

Fig. 3 Ratio of absorption for solid-density Al versus photon energy from present model at 

various temperatures to the 

€ 

T = 0.025eV  result. 

Fig. 4 Thermally averaged collision frequency versus photon energy from present model using 

all-order and Born approximation for solid-density Al at 

€ 

T = 0.025 and10eV . Also, all-

order calculations for 

€ 

T =10eV  with 

€ 

λ  corresponding to the 

€ 

T = 0.025eV  value. 

Fig. 5 Photon absorption cross-section versus photon energy for cold, solid Li and Na from 

present model (solid) and experimental data (circles). [14] The data is not plotted beyond 

the first photon ionization threshold. 

Fig. 6 Ratio of thermally averaged electron-ion collision frequency versus photon energy for 

solid-density Al at 

€ 

T = 0.1eV : Born approximation with dynamic and static screening 

(solid); Born approximation with hard-sphere 

€ 

S q( ) and 

€ 

S q( ) =1 (dot-dash); all-order 

calculation with 

€ 

Vb r( )  in Eq. (4.1) and 

€ 

Vb r( ) = 0  (dash). 

Fig. 7 Thermally averaged collision frequency using HLFC statically screened pseudo-potential: 

€ 

Rc = 0.745Å  (solid) and 

€ 

Rc = 0.6Å  (dash). The results are normalized to the RPA 

statically screened pseudo-potential with 

€ 

Rc = 0.6Å . 

Fig. 8 Photon absorption for solid-density Al at   

€ 

ω = 30eV  as a function of temperature: Present 

model (solid), 

€ 

α1 ω( ) (dot-dash), 

€ 

α2 ω( )  (short-dash), and VGW-LFC [1] (long-dash). 

Each calculation is normalized to their respective 

€ 

T = 0.025eV  value. 

 



 19 

103

104

105

101 102

Present Model
Model Vb=0
solid_LFC
solid_RPA
MD
Henke et al

κ(
ω
) [

cm
2  / 

g]

Photon energy [eV]

ρ = 2.7 g/cm3

T = 0.025

 

Fig. 1 Photon absorption cross-section versus photon energy for cold, solid Al from several 

models compared to experimental data [14] with L-edge at   

€ 

ω ≈ 73eV . 
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Fig. 2 Index of refraction versus photon energy for solid-density Al: present model at 

€ 

T = 0.025eV  (solid) and 

€ 

T =10eV  (short-dash), experimental data at 

€ 

T = 0.025eV  

(circles), [20,21] and collisionless limit 

€ 

no ω( )  (long-dash). 
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Fig. 3 Ratio of absorption for solid-density Al versus photon energy from present model at 

various temperatures to the 

€ 

T = 0.025eV  result. 
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Fig. 4 Thermally averaged collision frequency versus photon energy from present model using 

all-order and Born approximation for solid-density Al at 

€ 

T = 0.025 and10eV . Also, all-

order calculations for 

€ 

T =10eV  with 

€ 

λ  corresponding to the 

€ 

T = 0.025eV  value. 
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Fig. 5 Photon absorption cross-section versus photon energy for cold, solid Li and Na from 

present model (solid) and experimental data (circles). [14] The data is not plotted beyond 

the first photon ionization threshold. 
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Fig. 6 Ratio of thermally averaged electron-ion collision frequency versus photon energy for 

solid-density Al at 

€ 

T = 0.1eV : Born approximation with dynamic and static screening 

(solid); Born approximation with hard-sphere 

€ 

S q( ) and 

€ 

S q( ) =1 (dot-dash); all-order 

calculation with 

€ 

Vb r( )  in Eq. (4.1) and 

€ 

Vb r( ) = 0  (dash). 
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Fig. 7 Thermally averaged collision frequency using HLFC statically screened pseudo-potential: 

€ 

Rc = 0.745Å  (solid) and 

€ 

Rc = 0.6Å  (dash). The results are normalized to the RPA 

statically screened pseudo-potential with 

€ 

Rc = 0.6Å . 
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Fig. 8 Photon absorption for solid-density Al at   

€ 

ω = 30eV  as a function of temperature: Present 

model (solid), 

€ 

α1 ω( ) (dot-dash), 

€ 

α2 ω( )  (short-dash), and VGW-LFC [1] (long-dash). 

Each calculation is normalized to their respective 

€ 

T = 0.025eV  value. 


